Dry Weight (Biomass) References
Oryza sativa L. [Rice]


Aben, S.K., Seneweera, S.P., Ghannoum, O. and Conroy, J.P. Nitrogen requirements for maximum growth and photosynthesis of rice, Oryza sativa L. cv. Jarrah grown at 36 and 70 Pa CO2. Australian Journal of Plant Physiology 26: 759-766.

Alberto, A.M.P., Ziska, L.H., Cervancia, C.R. and Manalo, P.A. 1996. The influence of increasing carbon dioxide and temperature on competitive interactions between a C3 crop, rice (Oryza sativa) and a C4 weed (Echinochloa glabrescens). Australian Journal of Plant Physiology 23: 795-802.

Baker, J.T. 2004. Yield responses of southern US rice cultivars to CO2 and temperature. Agricultural and Forest Meteorology 122: 129-137.

Baker, J.T., Albrecht, S.L., Pan, D., Allen Jr., L.H., Pickering, N.B. and Boote, K.J. 1994. Carbon dioxide and temperature effects on rice (Oryza sativa L., cv. 'IR-72'. Soil and Crop Science Society of Florida, Proceedings 53: 22-25.

Baker, J.T., Allen Jr., L.H., Boote, K.J. and Pickering, N.B. 1997. Rice responses to drought under carbon dioxide enrichment. 1. Growth and yield. Global Change Biology 3: 119-128.

Baker, J.T., Allen, L.H., Jr. and Boote, K.J. 1990. Growth and yield responses of rice to carbon dioxide concentration. Journal of Agricultural Science 115: 313-320.

Baker, J.T., Laugel, F., Boote, K.J. and Allen, L.H., Jr. 1992. Effects of daytime carbon dioxide concentration on dark respiration in rice. Plant Cell and Environment 15: 231-239.

Bannayan, M., Kobayashi, K., Kim, H.-Y., Lieffering, M., Okada, M. and Miura, S. 2005. Modeling the interactive effects of atmospheric CO2 and N on rice growth and yield. Field Crops Research 93: 237-251.

Baysa, M.C., Tremmel, D.C., Reynolds, J.F., Rivero, G.C. and Tabbada, R.A. 2003. The interactive effects of elevated CO2, temperature and N supply on N concentration and allocation in rice (Oryza sativa L.). The Philippine Agricultural Scientist 86: 117-122.

Bhattacharyya, P., Roy, K.S., Dash, P.K., Neogi, S., Shahid, Md., Nayak, A.K., Raja, R., Karthikeyan, S., Balachandar, D. and Rao, K.S. 2014. Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). European Journal of Agronomy 53: 28-37.

Bhattacharyya, P., Roy, K.S., Neogi, S., Manna, M.C., Adhya, T.K., Rao, K.S. and Nayak, A.K. 2013. Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice. Environmental Monitoring and Assessment 185: 8659-8671.

Chen, F., Wu, G., Ge, F. and Parajulee, M.N. 2011. Relationships between exogenous-toxin quantity and increased biomass of transgenic Bt crops under elevated carbon dioxide. Ecotoxicology and Environmental Safety 74: 1074-1080.

Cheng, W., Sakai, H., Hartley, A., Yagi, K. and Hasegawa, T. 2008. Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Global Change Biology 14: 644-656.

Cheng, W., Sakai, H., Yagi, K. and Hasegawa, T. 2009. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology 149: 51-58.

Cheng, W., Yagi, K., Xu, H., Sakai, H. and Kobayashi, K. 2005. Influence of elevated concentrations of atmospheric CO2 on CH4 and CO2 entrapped in rice-paddy soil. Chemical Geology 218: 15-24.

Cheng, W., Yagi, K., Sakai, H. and Kobayashi, K. 2006. Effect of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry 77: 351-373.

Curu-Pirasanna-Pandi, G., Chander, S., Pal, M. and Soumia, P.S. 2018. Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Current Science 114: 1767-1777.

De Costa, W.A.J.M., Weerakoon, W.M.W., Herath, H.M.L.K. and Abeywardena, R.M.I. 2003. Response of growth and yield of rice (Oryza sativa) to elevated atmospheric carbon dioxide in the subhumid zone of Sri Lanka. Journal of Agronomy and Crop Science 189: 83-95.

De Costa, W.A.J.M., Weerakoon, W.M.W., Chinthaka, K.G.R., Herath, H.M.L.K. and Abeywardena, R.M.I. 2007. Genotypic variation in the response of rice (Oryza sativa L.) to increased atmospheric carbon dioxide and its physiological basis. Journal of Agronomy & Crop Science 193: 117-130.

De Costa, W.A.J.M., Weerakoon, W.M.W., Herath, H.M.L.K., Amaratunga, K.S.P. and Abeywardena, R.M.I. 2006. Physiology of yield determination of rice under elevated carbon dioxide at high temperatures in a subhumid tropical climate. Field Crops Research 96: 336-347.

Fan, G., Cai, Q., Li, X., Xie, H. and Zhu, J. 2010. Yield components and its conformation responded to elevated atmospheric CO2 in three rice (Oryza sativa L.) generations. African Journal of Biotechnology 9: 2118-2124.

Fumoto, T., Hasegawa, T., Cheng, W., Hoque, M.M., Yamakawa, Y., Shimono, H., Kobayashi, K., Okada M., Li, C. and Yagi, K. 2013. Application of a process-based biogeochemistry model, DNDC-Rice, to a rice field under free-air CO2 enrichment (FACE). Journal of Agricultural Meteorology 69: 173-190.

Hasegawa, T., Sakai, H., Tokida, T., Usui, Y., Nakamura, H., Wakatsuki, H., Chen, C.P., Ikawa, H., Zhang, G., Nakano, H., Matsushima, M.Y. and Hayashi, K. 2019. A high-yielding rice cultivar "Takanari" shows no N constraints on CO2 fertilization. Frontiers in Plant Science 10: Article 361, doi: 10.3389/fpls.2019.00361.

Imai, K., Coleman, D.F., and Yanagisawa, T. 1985. Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L.). Japanese Journal of Crop Science 54: 413-418.

Imai, K. and Murata, Y. 1979. Effect of carbon dioxide concentration on growth and dry matter production of crop plants. Japanese Journal of Crop Science 48: 409-417.

Jiang, Q., Zhang, J., Xu, X., Liu, G. and Zhu, J. 2020. Effects of free-air CO2 enrichment (FACE) and nitrogen (N) supply on N uptake and utilization of indica and japonica cultivars (Oryza sativa L.). Ecological Processes 9: 35, doi.org/10.1186/s13717-020-00238-5.

Jitla, D.S., Rogers, G.S., Seneweera, S.P., Basra, A.S., Oldfield, R.J. and Conroy, J.P. 1997. Accelerated early growth of rice at elevated CO2. Plant Physiology 115: 15-22.

Khan, M.A.H., and Madsen, A. 1986. Leaf diffusive resistance and water economy in carbon dioxide-enriched rice plants. New Phytologist 104: 215-223.

Kim, H.Y., Lieffering, M., Miura, S., Kobayashi, K. and Okada, M. 2001. Growth and nitrogen uptaike of CO2-enriched rice under field conditions. New Phytologist 150: 223-230.

Kim, H.-Y., Lieffering, M., Kobayashi, K., Okada, M., Mitchell, M.W. and Gumpertz, M. 2003. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research 83: 261-270.

Kim, H.-Y., Lim, S.-S., Kwak, J.-H., Lee, D.-S., Lee, S.-M., Ro, H.M. and Choi, W.J. 2011. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant and Soil 342: 59-71.

Kumar, U., Quick, W.P., Barrios, M., Sta Cruz, P.C. and Dingkuhn, M. 2017. Atmospheric CO2 concentration effects on rice water use and biomass production. PLoS ONE 12: e0169706.

Li, J.-Y., Liu, X.-H., Cai, Q.-S., Gu, H., Zhang, S.-S., Wu, Y.-Y. and Wang, C.-J. 2008. Effects of elevated CO2 on growth, carbon assimilation, photosynthate accumulation and related enzymes in rice leaves during sink-source transition. Journal of Integrative Plant Biology 50: 723-732.

Li, Z., Tang, S., Deng, X., Wang, R. and Song, Z. 2010. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: Implication for phytoextraction and food safety. Journal of Hazardous Materials 177: 352 -361.

Liu, G.C., Tokida, T., Matsunami, T., Nakamura, H., Okada, M., Sameshima, R., Hasegawa, T. and Sugiyama, S.-I. 2012. Microbial community composition controls the effects of climate change on methane emission from rice paddies. Environmental Microbiology Reports 4: 648-654.

Liu, H., Yang, L., Wang, Y., Huang, J., Zhu, J., Yunxia, W., Dong, G. and Liu, G. 2008. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Research 108: 93-100.

Lou, Y., Inubushi, K., Mizuno, T., Hasegawa, T., Lin, Y., Sakai, H., Cheng, W. and Kobayashi, K. 2008. CH4 emission with differences in atmospheric CO2 enrichment and rice cultivars in a Japanese paddy soil. Global Change Biology 14: 2678-2687.

Ma, H.-L., Zhu, J.-G., Liu, G., Xie, Z.-B., Wang, Y.-L., Yang, L.-X. and Zeng, Q. 2007b. Availability of soil nitrogen and phosphorus in a typical rice-wheat rotation system under elevated atmospheric [CO2]. Field Crops Research 100: 44-51.

Ma, H., Zhu, J., Xie, Z., Liu, G., Zeng, Q. and Han, Y. 2007a. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant and Soil 294: 137-146.

Makino, A., Harada, M., Kaneko, K., Mae, T., Shimada, T. and Yamamoto, N. 2000a. Whole-plant growth and N allocation in transgenic rice plants with decreased content of ribulose-1,5-bisphosphate carboxylase under different CO2 partial pressures. Australian Journal of Plant Physiology 27: 1-12.

Makino, A., Nakano, H., Mae, T., Shimada, T. and Yamamoto, N. 2000b. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment. Journal of Experimental Botany 51: 383-389.

Mao, L., Wang, Y.-B., Zhu, C.-W., Yin, Y. and Guo, H.-Y. 2020. Effects of decabromodiphenyl ether and elevated carbon dioxide on rice (Oryza sativa L.). Bulletin of Environmental Contamination and Toxicology https://doi.org/10.1007/s00128-020-02928-4.

Masuya, Y., Kumagai, E., Matsunami, M. and Shimono, H. 2020. Dry matter partitioning to leaves differentiates African and Asian rice genotypes exposed to elevated CO2. Journal of Agronomy and Crop Science, DOI: 10.1111/jac.12445.

Morison, J.I.L. and Gifford, R.M. 1984. Plant growth and water use with limited water supply in high CO2 concentrations. II. Plant dry weight, partitioning and water use efficiency. Australian Journal of Plant Physiology 11: 375-384.

Nakano, H., Yoshinaga, S., Takai, T., Arai-Sanoh, Y., Kondo, K., Yamamoto, T., Sakai, H., Tokida, T., Usui, Y., Nakamura, H., Hasegawa, T. and Kondo, M. 2017. Quantitative trait loci for large sink capacity enhance rice grain yield under free-air CO2 enrichment conditions. Scientific Reports 7: 1827, doi:10.1038/s41598-017-01690-8.

Olszyk, D.M. and Wise, C. 1997. Interactive effects of elevated CO2 and O3 on rice and flacca tomato. Agriculture, Ecosystems and Environment 66: 1-10.

Olszyk, D.M., Centeno, H.G.S., Ziska, L.H., Kern, J.S. and Matthews, R.B. 1999. Global climate change, rice productivity and methane emissions: comparison of simulated and experimental results. Agricultural and Forest Meteorology 97: 87-101.

Pang, J., Zhu, J.-G., Xie, Z.-B., Liu, G., Zhang, Y.-L., Chen, G.-P., Zeng, Q. and Cheng, L. 2006. A new explanation of the N concentration decrease in tissues of rice (Oryza sativa L.) exposed to elevated atmospheric pCO2. Environmental and Experimental Botany 57: 98-105.

Rahman, S., Duursma, R.A., Muktadir, M.A., Roberts, T.H. and Atwell, B.J. 2018. Leaf canopy architecture determines light interception and carbon gain in wild and domesticated Oryza species. Environmental and Experimental Botany 155: 672-680.

Raj, A., Chakrabarti, B., Pathak, H., Singh, S.D., Mina, U. and Purakayastha, T.J. 2019. Growth, yield and nitrogen uptake in rice crop grown under elevated carbon dioxide and different doses of nitrogen fertilizer. Indian Journal of Experimental Biology 57: 181-187.

Roy, K.S., Bhattacharyya, P., Neogi, S., Rao, K.S. and Adhya, T.K. 2012. Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice (Oryza sativa L.). Field Crops Research 139: 71-79.

Sakai, H., Hasegawa, T. and Kobayashi, K. 2006. Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration. New Phytologist 170: 321-332.

Sakai, H., Tokida, T., Usui, Y., Nakamura, H. and Hasegawa, T. 2019. Yield responses to elevated CO2 concentration among Japanese rice cultivars released since 1882. Plant Production Science 22: 352-366.

Sasaki, H., Aoki, N., Sakai, H., Hara, T., Uehara, N., Ishimaru, K. and Kobayashi, K. 2005a. Effect of CO2 enrichment on the translocation and partitioning of carbon at the early grain-filling stage in rice (Oryza sativa L.). Plant Production Science 8: 8-15.

Sasaki, H., Hara, T., Ito, S., Miura, S., Hoque, M.M., Lieffering, M., Kim, H.-Y., Okada, M. and Kobayashi, K. 2005b. Seasonal changes in canopy photosynthesis and respiration, and partitioning of photosynthate, in rice (Oryza sativa L.) grown under free-air CO2 enrichment. Plant and Cell Physiology 46: 1704-1712.

Sasaki, H., Hara, T., Ito, S., Uehara, N., Kim, H.-Y., Lieffering, M., Okada, M. and Kobayashi, K. 2007. Effect of free-air CO2 enrichment on the storage of carbohydrate fixed at different stages in rice (Oryza sativa L.). Field Crops Research 100: 24-31.

Schrope, M.K., Chanton, J.P., Allen, L.H. and Baker, J.T. 1999. Effect of CO2 enrichment and elevated temperature on methane emissions from rice, Oryza sativa. Global Change Biology 5: 587-599.

Seneweera S. 2011. Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. Journal of Plant Interactions 6: 35-42.

Shimono, H. and Bunce, J.A. 2009. Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration. Annals of Botany 103: 87-94.

Shimono, H. and Okada, M. 2013. Plasticity of rice tiller production is related to genotypic variation in the biomass response to elevated atmospheric CO2 concentration and low temperatures during vegetative growth. Environmental and Experimental Botany 87: 227-234.

Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K. and Hasegawa, T. 2008. Rice yield enhancement by elevated CO2 is reduced in cool weather. Global Change Biology 14: 276-284.

Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K. and Hasegawa, T. 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. Journal of Experimental Botany 60: 523-532.

Singh, S.S., Mukherjee, J., Kumar, S. and Idris, M. 2013. Effect of elevated CO2 on growth and yield of rice crop in open top chamber in Sub humid climate of eastern India. Journal of Agrometeorology 15: 1-10.

Tako, Y., Arai, R., Otsubo, K. and Nitta, K. 2001. Application of crop gas exchange and transpiration data obtained with CEEF to global change problem. Advances in Space Research 27: 1541-1545.

Teramura, A.H., Sullivan, J.H. and Ziska, L.H. 1990. Interaction of elevated ultraviolet-B radiation and CO2 productivity and photosynthetic characteristics on wheat, rice, and soybean. Plant Physiology 94: 470-475.

Thinh, N.C., Shimono, H., Kumagai, E., and Kawasaki, M. 2017. Effects of elevated CO2 concentration on growth and photosynthesis of Chinese yam under different temperature regimes. Plant Production Science 20: 227-236.

Tokida, T., Fumoto, T., Cheng, W., Matsunami, T., Adachi, M., Katayanagi, N., Matsushima, M., Okawara, Y., Nakamura, H., Okada, M., Sameshima, R. and Hasegawa, T. 2010. Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation. Biogeosciences 7: 2639-2653.

Uprety, D.C., Dwivedi, N., Jain, V. and Mohan, R. 2002. Effect of elevated carbon dioxide concentration on the stomatal parameters of rice cultivars. Photosynthetica 40: 315-319.

Wang, B., Li, J., Wan, Y., Cai, W., Guo, C., You, S., Li, R., Qin, X., Gao, Q., Zhou, S., Liu, K., Wilkes, A. and Li, Y. 2019b. Variable effects of 2°C air warming on yield formation under elevated [CO2] in a Chinese double cropping system. Agricultural and Forest Meteorology 278: 107662.

Wang, B., Li, J., Wan, Y., Li, Y., Qin, X., Gao, Q., Waqas, M.A., Wilkes, A., Cai, W., You, S. and Zhou, S. 2018b. Responses of yield, CH4 and N2O emissions to elevated atmospheric temperature and CO2 concentration in a double rice cropping system. European Journal of Agronomy 96: 60-69.

Wang, J., Li, L., Lam, S.K., Zhang, X., Liu, X. and Pan, G. 2018a. Changes in nutrient uptake and utilization by rice under simulated climate change conditions: A 2-year experiment in a paddy field. Agricultural and Forest Meteorology 250/251: 202-208.

Wang, J., Liu, X., Zhang, X., Smith, P., Li, L., Filley, T.R., Cheng, K., Shen, M., He, Y. and Pan, G. 2016. Size and variability of crop productivity both impacted by CO2 enrichment and warming - A case study of 4 year field experiment in a Chinese paddy. Agriculture, Ecosystems and Environment 221: 40-49.

Wang, W., Cai, C., Lam, S.K., Liu, G. and Zhu, J. 2018c. Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. European Journal of Agronomy 99: 21-29.

Wang, W., Xu, X., Zhu, C., Gu, J., Zhang, W., Liu, G. and Zhu, J. 2019. Elevated CO2-induced changes in cytokinin and nitrogen metabolism are associated with different responses in the panicle architecture of two contrasting rice genotypes. Plant Growth Regulation 89: 119-129.

Watling, J.R. and Press, M.C. 2000. Infection with the parasitic angiosperm Striga hermonthica influences the response of the C3 cereal Oryza sativa to elevated CO2. Global Change Biology 6: 919-930.

Weerakoon, W.M., Olszyk, D.M. and Moss, D.N. 1999. Effects of nitrogen nutrition on responses of rice seedlings to carbon dioxide. Agriculture, Ecosystems and Environment 72: 1-8.

Xie, B., Zhou, Z., Mei, B., Zheng, X., Dong, H., Wang, R., Han, S., Cui, F., Wang, Y. and Zhu, J. 2012. Influences of free-air CO2 enrichment (FACE), nitrogen fertilizer and crop residue incorporation on CH4 emissions from irrigated rice fields. Nutrient Cycling in Agroecosystems 93: 373-385.

Xie, L.Y., Lin, E.D., Zhao, H.L. and Feng, Y.X. 2016. Changes in the activities of starch metabolism enzymes in rice grains in response to elevated CO2 concentration. International Journal of Biometeorology 60: 727-736.

Xu, Z., Zheng, X., Wang, Y., Han, S. and Huang, Y. 2004. Effects of elevated CO2 and N fertilization on CH4 emissions from paddy rice fields. Global Biogeochemical Cycles 18: 10.1029/2004GB002233.

Xu, Z., Zheng, X., Wang, Y., Wang, Y., Huang, Y. and Zhu, J. 2006. Effect of free-air atmospheric CO2 enrichment on dark respiration of rice plants (Oryza sativa L.). Agriculture, Ecosystems and Environment 115: 105-112.

Yamakawa, Y., Saigusa, M., Okada, M. and Kobayashi, K. 2004. Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant and Soil 259: 367-372.

Yang, L., Huang, J., Yang, H., Dong, G., Liu, G., Zhu, J. and Wang, Y. 2006a. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research 98: 12-19

Yang, L., Huang, J., Yang, H., Zhu, J., Liu, H., Dong, G., Liu, G., Han, Y. and Wang, Y. 2006b. The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Research 98: 141-150.

Yang, L., Huang, J., Yang, H., Dong, G., Liu, H., Liu, G., Zhu, J. and Wang, Y. 2007a. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Research 100: 189-199.

Yang, L., Liu, H., Wang, Y., Zhu, J., Huang, J., Liu, G., Dong, G. and Wang, Y. 2009. Yield formation of CO2-enriched inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air condition in a warm sub-tropical climate. Agriculture, Ecosystems and Environment 129: 193-200.

Yang, L., Liu, H., Wang, Y., Zhu, J., Huang, J., Liu, G., Dong, G. and Wang, Y. 2009b. Impact of elevated CO2 concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. Field Crops Research 112: 7-15.

Yang, L., Wang, Y., Dong, G., Gu, H., Huang, J., Zhu, J., Yang, H., Liu, G. and Han, Y. 2007. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research 102: 128-140.

Yang, L., Wang, Y. Kobayashi, K., Zhu, J., Huang, J., Yang, H., Wang, Y., Dong, G., Liu, G., Han, Y., Shan, Y., Hu, J. and Zhou, J. 2008. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Global Change Biology 14: 1844-1853.

Yoshimoto, M., Oue, H. and Kobayashi, K. 2005. Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agricultural and Forest Meteorology 133: 226-246.

Yun, S.-I., Kang, B.-M., Lim, S.-S., Choi, W.-J., Ko, J., Yoon, S., Ro, H.-M. and Kim, H.-Y. 2012. Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated [CO2]. Agricultural and Forest Meteorology 154-155: 75-83.

Zeng, Q., Liu, B., Gilna, B., Zhang, Y., Zhu, C., Ma, H., Pang, J., Chen, G. and Zhu, J. 2011. Elevated CO2 effects on nutrient competition between a C3 crop (Oryza sativa L.) and a C4 weed (Echinochloa crusgalli L.). Nutrient Cycling in Agroecosystems 89: 93-104.

Zhang, G., Sakai, H., Yoshimoto, M., Wakatsuki, H., Tokida, T., Ikawa, H., Arai, M., Nakamura, H. and Hasegawa, T. 2020. Effect of foliar spray of kinetin on the enhancement of rice yield by elevated CO2. Journal of Agronomy and Crop Science, DOI: 10.1111/jac.12457.

Zhao, X., Zhou, N., Lai, S., Frei, M., Wang, Y. and Yang, L. 2019. Elevated CO2 improves lodging resistance of rice by changing physicochemical properties of the basal internodes. Science of the Total Environment 647: 223-231.

Zheng, X., Zhou, Z., Wang, Y., Zhu, J., Wang, Y., Yue, J., Shi, Y., Kobayashi, K., Inubushi, K., Huang, Y., Han, S., Xu, Z., Xie, B., Butterbach-Bahl, K. and Yang, L. 2006. Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biology 12: 1717-1732.

Zhong, L., Yagi, K., Sakai, H. and Kobayashi, K. 2004. Influence of elevated CO2 and nitrogen nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon and dissolved CH4. Plant and Soil 258: 81-90.

Zhu, C., Xu, X., Wang, D., Zhu, J. and Liu, G. 2015. An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment. Scientific Reports 5: 10.1038/srep12719.

Zhu, C., Zeng, Q., Ziska, L.H., Zhu, J., Xie, Z. and Liu, G. 2008. Effect of nitrogen supply on carbon dioxide-induced changes in competition between rice and barnyardgrass (Echinochloa crus-galli). Weed Science 56: 66-71.

Zhu, C., Zhu, J., Cao, J., Jiang, Q., Liu, G. and Ziska, L.H. 2014. Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2]. Journal of Experimental Botany 65: 6049-6056.

Zhu, C., Ziska, L.H., Sakai, H., Zhu, J. and Hasegawa, T. 2013. Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars. European Journal of Agronomy 46: 20-24.

Ziska, L.H., Manalo, P.A. and Ordonez, R.A. 1996. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature: growth and yield response of 17 cultivars. Journal of Experimental Botany 47: 1353-1359.

Ziska, L.H., Namuco, O., Moya, T. and Quilang, J. 1997. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal 89: 45-53.

Ziska, L.H. and Teramura, A.H. 1992. Intraspecific variation in the response of rice (Oryza sativa) to increased CO2 -- photosynthetic, biomass and reproductive characteristics. Physiologia Plantarum 84: 269-276.

Ziska, L.H., Tomecek, M.B. and Gealy, D.R. 2010. Competitive interactions between cultivated and red rice as a function of recent and projected increases in atmospheric carbon dioxide. Agronomy Journal 102: 118-123.

Ziska, L.H., Tomecek, M.B. and Gealy, D.R. 2014. Assessment of cultivated and wild, weedy rice lines to concurrent changes in CO2 concentration and air temperature: determining traits for enhanced seed yield with increasing atmospheric CO2. Functional Plant Biology 41: 236-243.


Printer Friendly Version